129 research outputs found

    The Use Of Arbitration By Federal Agencies To Solve Environmental Disputes: All Wrapped Up In Red Tape

    Get PDF

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources

    Creating a Worldwide Network For the Global Environment for Network Innovations (GENI) and Related Experimental Environments

    Get PDF
    Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world

    The GEYSERS optical testbed: a platform for the integration, validation and demonstration of cloud-based infrastructure services

    Get PDF
    The recent evolution of cloud services is leading to a new service transformation paradigm to accommodate network infrastructures in a cost-scalable way. In this transformation, the network constitutes the key to efficiently connect users to services and applications. In this paper we describe the deployment, validation and demonstration of the optical integrated testbed for the “GEneralized architecture for dYnamic infrastructure SERviceS” (GEYSERS) project to accommodate such cloud based Infrastructure Services. The GEYSERS testbed is composed of a set of local physical testbeds allocated in the facilities of the GEYSERS partners. It is built up based on the requirements specification, architecture definition and per-layer development that constitutes the whole GEYSERS ecosystem, and validates the procedures on the GEYSERS prototypes. The testbed includes optical devices (layer 1), switches (layer 2), and IT resources deployed in different local testbeds provided by the project partners and interconnected among them to compose the whole testbed layout. The main goal of the GEYSERS testbed is twofold. On one hand, it aims at providing a validation ground for the architecture, concepts and business models proposed by GEYSERS, sustained by two main paradigms: Infrastructure as a Service (IaaS) and the coupled provisioning of optical network and IT resources. On the other hand, it is used as a demonstration platform for testing the software prototypes within the project and to demonstrate to the research and business community the project approach and solutions. In this work, we discuss our experience in the deployment of the testbed and share the results and insights learned from our trials in the process. Additionally, the paper highlights the most relevant experiments carried out in the testbed, aimed at the validation of the overall GEYSERS architecture

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore